Packing Tight Hamilton Cycles in Uniform Hypergraphs

نویسندگان

  • Deepak Bal
  • Alan M. Frieze
چکیده

We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some 1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We define a class of ( , p)-regular hypergraphs, that includes random hypergraphs, for which we can prove the existence of a decomposition of almost all edges into type ` Hamilton cycles, where ` < k/2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Hamilton cycles in random uniform hypergraphs

In this paper we show that e/n is the sharp threshold for the existence of tight Hamilton cycles in random k-uniform hypergraphs, for all k ≥ 4. When k = 3 we show that 1/n is an asymptotic threshold. We also determine thresholds for the existence of other types of Hamilton cycles.

متن کامل

The Complexity of the Hamilton Cycle Problem in Hypergraphs of High Minimum Codegree

We consider the complexity of the Hamilton cycle decision problem when restricted to k-uniform hypergraphs H of high minimum codegree δ(H). We show that for tight Hamilton cycles this problem is NP-hard even when restricted to k-uniform hypergraphsH with δ(H) ≥ n2−C, where n is the order of H and C is a constant which depends only on k. This answers a question raised by Karpiński, Ruciński and ...

متن کامل

Counting and packing Hamilton `-cycles in dense hypergraphs

A k-uniform hypergraph H contains a Hamilton `-cycle, if there is a cyclic ordering of the vertices of H such that the edges of the cycle are segments of length k in this ordering and any two consecutive edges fi, fi+1 share exactly ` vertices. We consider problems about packing and counting Hamilton `-cycles in hypergraphs of large minimum degree. Given a hypergraph H, for a d-subset A ⊆ V (H)...

متن کامل

Tight Hamilton cycles in random hypergraphs

We give an algorithmic proof for the existence of tight Hamilton cycles in a random r-uniform hypergraph with edge probability p = n−1+ε for every ε > 0. This partly answers a question of Dudek and Frieze [Random Structures Algorithms], who used a second moment method to show that tight Hamilton cycles exist even for p = ω(n)/n (r ≥ 3) where ω(n) → ∞ arbitrary slowly, and for p = (e + o(1))/n (...

متن کامل

Packing hamilton cycles in random and pseudo-random hypergraphs

We say that a k-uniform hypergraph C is a Hamilton cycle of type `, for some 1 ≤ ` ≤ k, if there exists a cyclic ordering of the vertices of C such that every edge consists of k consecutive vertices and for every pair of consecutive edges Ei−1, Ei in C (in the natural ordering of the edges) we have |Ei−1 \ Ei| = `. We prove that for k/2 < ` ≤ k, with high probability almost all edges of the ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Discrete Math.

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2012